martes, 22 de febrero de 2011

Reino Protista

Algas: incluye a los Phyla:

Euglenophyta




Euglena es un género de protistas unicelulares perteneciente al grupo de los Euglénidos, con numerosos cloroplastos en forma de lente o aplanados, cada uno con un pirenoide. Presenta un estigma o mancha ocular con lutenina, β-caroteno y criptoxantina localizados en varias vesículas membranosas próximas al margen del reservorio. Poseen un flagelo largo que sobresale del reservorio con mastigonemas en una fila, con un engrosamiento en el extremo proximal. También puede aparecer un flagelo corto que se fusiona con la base del flagelo largo. El núcleo es grande, siendo la división nuclear interna, sin rotura de la envoltura nuclear (mitosis cerrada), los microtúbulos se forman dentro del núcleo, aun cuando no se forma un típico huso acromático. Presenta una invaginación anterior (bolsa flagelar), donde se insertan los flagelos. Asociado al mastigonema se observa la mancha ocular que actúa como un tamiz de la luz, antes de llegar a la protuberancia flagelar. Un gran vacuola descarga su contenido la bolsa flagelar. La bolsa flagelar puede intervenir en la nutrición mediante fagocitosis o pinocitosis en especies sin citostoma.

Chrysophyta
Las diatomeas son organismos fotosintetizadores que viven en agua dulce o marina constituyendo una parte muy importante del fitoplancton. Uno de los rasgos característicos de las células de diatomeas es la presencia de una cubierta de sílice (dióxido de silicio hidratado) llamado frústulo. Los frustulos muestran una gran diversidad de formas, algunos muy bellos y ornamentados y generalmente constan de dos partes asimétricas o valvas con una división entre ellas, de ahí el nombre del grupo. Muchas especies aparecen formando encadenamientos u otros agregados ordenados. La evidencia fósil sugiere que se originaron durante o antes del período Jurásico


Pyrrophyta

Dinoflagellata o Pyrrhophyta es un extenso grupo de protistas flagelados. La mayoría de las especies son unicelulares y forman parte del plancton marino, si bien las hay de agua dulce y coloniales. Sus poblaciones se distribuyen en función de la temperatura, salinidad y profundidad. Alrededor de la mitad de los dinoflagelados son fotosintéticos y constituyen el grupo más grande de algas eucariontes aparte de las Diatomeas. Puesto que son productores primarios, constituyen una parte importante de la cadena alimenticia acuática. Ciertas especies fotosintéticas, las zooxantelas, son endosimbiontes de animales (corales, anémonas y almejas) y protozoos marinos desempeñando un papel importante en la biología de los arrecifes coralinos. Otros dinoflagelados son depredadores de otros protozoos y algunas formas son parásitas (véase por ejemplo, Oodinium y Pfiesteria). Algunos dinoflagelados son responsables de las mareas rojas, pues sintetizan fuertes toxinas. El nombre procede del griego dinos, girando y del latín, flagellum, látigo.


Protozoarios:
incluye a los Phyla Sarcodina, Ciliophora, Sporozoa y Mastigophora.

Phylum Sarcodina
El grupo de los sarcodarios, conocidos también como Rizópodos, incluye a las amibas, tanto cubiertas por caparazones o tecas, como sin ellos. Las amibas se hallan distribuidas por todo el mundo, en hábitat marino o dulce - acuícola, y son especialmente comunes en el suelo. Muchas de ellas son parásitas de animales y pasan de huésped en huésped, o del suelo al hospedero. Se reproducen por bipartición originando dos células de igual volumen. Todas son microscópicas, aunque algunas alcanzan un tamaño considerable (varios centenares de micras de longitud) aun tratándose de organismos unicelulares. Aunque las amibas carecen de centríolos, y de flagelos, exhiben varios tipos de movilidad. Se reconocen por la formación de pseudópodos (pies falsos) que son prolongaciones citoplasmáticas que usan para la locomoción y para rodear y absorber partículas alimenticias. Algunas especies de sarcodarios de vida libre cuentan con un exoesqueleto o caparazón calcáreo (como los foraminíferos), los cuales son indicadores de yacimientos petroleros. Otras especies como Entamoeba histolytica causa enfermedades del tipo de las disenterías con alto índice de mortalidad en México.


Phylum Ciliophora


Los ciliados son organismos heterótrofos y unicelulares. Una típica célula de estos organismos se halla recubierta de cilios de consistencia fibrilar y resistente. Casi todos los ciliados tienen dos tipos de núcleos muy distintos, un micronúcleo que realiza la función reproductora y un macronúcleo de mayor tamaño que realiza funciones metabólicas relacionadas con el desarrollo y crecimiento. Los finos y delicados cilios se hallan modificados y realizan funciones locomotoras. El ejemplo clásico es el Paramecium.


Phylum Sporozoa


Los esporozoarios (spor, semilla) son seres heterótrofos, parásitos y productores de esporas. Se reproducen sexualmente con alternancia de generaciones haploide y diploide. Los ciclos vitales pueden ser muy complicados involucrando a varios huéspedes, tanto vertebrados como invertebrados. Las especies más conocidas son del género Plasmodium, parásito que transmiten el paludismo a los seres humanos por medio de la picadura de las hembras del mosquito Anopheles. El control de los mosquitos es uno de los principales recursos de las campañas contra el paludismo, enfermedad que afecta a los humanos, otros primates, roedores e incluso aves y reptiles.


Phylum Mastigophora

Son protozoarios, llamados comúnmente flagelados (mastix, flagelo; phoros, llevar), algunos son de vida libre y otros son parásitos como el Trypanosoma gambiense que causa la enfermedad del sueño en el humano, el T. cruzi que ocasiona la enfermedad de Chagas o tripanosomiasis americana; las especies del género Leishmania provocan las llamadas leishmaniasis como la úlcera de los chicleros, frecuente en las regiones selváticas de México, produciendo úlceras cutáneas en las orejas y en la mucosas nasal y bucal; otros del género Giardia, causan ciertos desórdenes intestinales en los seres humanos.

Reino Protista

Este reino incluye a especies unicelulares eucarióticas autótrofas de tipo vegetal (algas protistas) y otros heterótrofos parecidos a células animales (protozoarios protistas), (protos, “primero”). La clasificación del Reino Protista se basa en la presencia de clorofila (algas) o de su ausencia (protozoarios). Algas: incluye a los Phyla Euglenophyta, Chrysophyta y Pyrrophyta.
Protozoarios: incluye a los Phyla Sarcodina, Ciliophora, Sporozoa y Mastigophora. No en todos los casos la clasificación de este Reino se basa en relaciones evolutivas, sino de un modo más práctico, en características funcionales. La taxonomía de este grupo está en constante cambio siendo muy común encontrar diferentes sistemas de clasificación en diferentes textos de Biología. Los protistas, se originaron hace unos 1600 millones de años, son organismos complejos y se cree que de ellos se derivaron los hongos, las plantas superiores y los animales, sus células son mucho más complejas que las de estos organismos, ya que deben realizar todas las funciones de un organismo independiente. Las algas presentan clorofila, por lo que son autótrofos, producen mucho del oxígeno del planeta, y son fuente principal de alimentos para muchos organismos. La mayoría de los protozoarios viven en océanos o en aguas dulces; son heterótrofos que se alimentan de otros organismos o materia orgánica, hay algunos parásitos que causan enfermedades a animales incluyendo al hombre; algunos pueden realizar fotosíntesis en presencia de luz o nutrirse de forma heterótrofa en su ausencia.

martes, 8 de febrero de 2011

MONERA

El reino de los móneras (moneres en griego quiere decir solitario) está formado por organismos procariontes unicelulares (pro, a favor de, káryon, núcleo, ontos, ser), poseen ribosomas y una cadena circular de ADN que hace las veces de cromosoma; carecen de organelos delimitados por membranas (mitocondrias, lisosomas, R. E. y núcleo verdadero). Se dividen asexualmente por fisión binaria en vez de hacerlo por mitosis, pero pueden presentar recombinación genética.

Archaebacteria

Las arquebacterias (Archae, antiguo) son tal vez las células vivas más primitivas que se conocen, sus paredes celulares carecen de la sustancia llamada peptidoglucano que sí está presente en todas las eubacterias.Las arquebacterias fotosintéticas utilizan el pigmento bacteriorrodopsina en lugar de la bacterioclorofila empleada por las eubacterias.
Todas las arquebacterias viven en ambientes tan extremos que no puede sobrevivir ningún otro tipo de organismo, lo que ha llevado a pensar que estas primitivas móneras evolucionaron en una época es que estos ambientes extremos eran comunes de la Tierra primitiva.

Un grupo llamado metanógenas habitan en ciénegas y pantanos donde producen metano a través de quimiosíntesis anaeróbica.

Las halofílicas (afines a la sal) viven en regiones con concentraciones elevadas de sal, como en el Mar Muerto de Israel.

Las termoacidófilas, se desarrollan en manantiales térmicos y respiraderos volcánicos en condiciones de alta temperatura y pH bajo.

Eubacterias


Para fines didácticos, se dividirán las eubacterias en dos Phyla: Cyanophyta y Schizophyta.

Phylum CyanophytaLas cianofitas (kyanos, azul) son las llamadas algas azul-verde, poseen clorofila y un pigmento azul llamado ficocianina, pueden existir solas, en forma de filamento o en colonias pequeñas.
Aunque no tienen cloroplastos, realizan fotosíntesis liberando oxígeno. Es bien sabido que hace unos 2 mil millones de años, las cianofitas realizaron uno de los mayores cambios que ha sufrido nuestro planeta: el incremento de la concentración de oxígeno atmosférico desde un porcentaje inferior al 1% a cerca del 20%, sin esta concentración, ni los animales ni el hombre hubieran evolucionado. Resultan además muy importantes por ser capaces de fijar el nitrógeno libre, elemento necesario para la formación de aminoácidos, y desempeñan un papel importante manteniendo la fertilidad de los campos de arroz inundados. Las cianofitas habitan en ríos, mares, lagos, pantanos, aguas termales y lugares en donde las bajas temperaturas congelan el agua. En los depósitos de agua si se dejan crecer sin control se vuelven tan abundantes que dan un mal sabor al agua.
Entre los géneros más representativos de estas algas están: Gleocapsa, Oscillatoria, Nostoc y Spirulina.
Phylum Schizophyta
Incluye a las bacterias o esquizofitas, cuya división celular es por amitosis o división directa (schizein, dividir), son seres cosmopolitas, es decir que habitan en todos los lugares de la biosfera.Se conocen y clasifican por su forma en 3 grupos:
1. Coccus o cocos, bacterias esféricas2. Bacillus o bacilos: cilíndricas o bastoncillos3. Spirillum o espiraladas: filamentos en espiralCocos: son esféricas, pueden vivir aisladas o agrupadas en pares o diplococos (Diplococcus pneumoniae, causante de la pulmonía bacteriana), en racimos o estafilococos (Staphylococcus aureus, que vive sobre la piel y puede producir erupciones) y en forma de cadena o estreptococos (Streptococcus thermophilus que se emplea para hacer yogurt)
. Bacilos, bacterias en forma de bastón, ejemplos: Salmonella typhi (causante de la tifoidea), Mycobacterium tuberculosis (causante de la tuberculosis)
. Espiraladas, pueden ser:
a) espirilos, en forma de “coma” (Vibrio comma, bacteria causante del cólera) o
b) espiroquetas, bacterias con muchas espirales (Treponema pallidum, bacteria causante de la sífilis)
Las bacterias presentan 4 estructuras celulares características:1. Cápsula con función antígena y de adhesión
2. Pared celular, mantiene la forma y protege a la bacteria de las variaciones osmóticas del medio
3. Membrana plasmática: controla la entrada y salida de materiales del citoplasma
4. Citoplasma, no contiene organelos membranosos, presenta ácidos nucleicos, cromosomas bacterianos y en algunas, pigmentos fotosintéticos.
Las bacterias se reproducen y crecen de acuerdo a condiciones favorables, para ello, requieren de agua; al igual que otras células, en un ambiente seco, se deshidratan e inactivan; necesitan además, una fuente de energía, por lo que obtienen su alimento de diferentes formas, siendo algunas saprofitas, es decir, degradan la materia muerta y los desperdicios de plantas y animales, devolviendo minerales y nutrientes al terreno, de lo contrario, los cadáveres y desperdicios se acumularían hasta el agotamiento de las posibilidades de la vida.
Las bacterias heterótrofas parásitas no poseen determinados sistemas enzimáticos por lo que dependen de otros organismos provocando enfermedades y en ocasiones la muerte del huésped.
Existen bacterias autótrofas que sintetizan sustancias a partir de sustancias inorgánicas sencillas, como por ejemplo, las bacterias quimiosintéticas, que emplean moléculas oxirreductoras como fuente de energía, las bacterias fotosintéticas poseen un pigmento llamado bacterioclorofila, de estructura molecular parecido a la clorofila de las plantas verdes.
La mayor parte de las bacterias son aerobias por utilizar oxígeno del agua o del aire para respirar. Cuando pueden vivir en presencia o ausencia de oxígeno libre se llaman anaerobias facultativas, y si solo crecen en ausencia de oxígeno, se denominan como anaerobias estrictas, estas obtienen energía a partir de carbohidratos y al final de su proceso producen alcohol o ácido láctico.
Tétanos, gangrena y botulismo, son algunas enfermedades ocasionadas por bacterias del género Clostridium, bacterias anaerobias estrictas.
Algunos efectos nocivos de las bacterias al hombre son: enfermedades, descomposición de alimentos, deterioro de madera, telas y pieles.
Dentro de los efectos benéficos de las bacterias tenemos: la degradación de las sustancias químicas que plantas y animales necesitan para vivir, si no se reciclaran, no estarían disponibles para usarse. El carbono, azufre, nitrógeno y fósforo son elementos que las bacterias reciclan continuamente. Algunas bacterias viven dentro de organismos y los ayudan (mutualismo), Escherichia coli vive en los intestinos de humanos sintetizando vitaminas; los bovinos se benefician con las bacterias que viven en su aparato digestivo al degradar la celulosa de la hierba.Varias compañías farmacéuticas emplean bacterias para producir medicamentos; la ingeniería genética emplea bacterias para la producción de insulina.
Las bacterias también limpian áreas en las que hay desperdicios tóxicos. Muchos alimentos como el yogurt, el queso y el vinagre, son productos de la acción bacteriana.

Viroides y Priones

.Se suponía que los virus eran los agentes infecciosos más pequeños que existen, pero recientemente se han descubierto filamentos de ARN sin capa proteica conocidos como viroides y priones.
1. Viroides
Son moléculas de ARN circular que carecen de cualquier protección, capaces de producir enfermedades en algunas plantas.
2. Priones.
Son agentes patógenos formados por una proteína (proteína del prión o ppr) Producen entre otras, la enfermedad de las "vacas locas" o encefalopatía bovina espongiforme (enfermedad neurodegenerativa grave). Esta proteína se acumula en el cerebro de animales enfermos, dando lugar a la estructura esponjosa de la corteza cerebral que da nombre a la enfermedad.

Virus

Un virus es un agente genético que posee un ácido nucleico que puede ser ADN o ARN, rodeado de una cubierta de proteína llamada cápside que posee unidades estructurales denominadas capsómeros.
Los virus son muy pequeños (del orden de las milimicras) por lo que sólo se pueden ver al microscopio electrónico. Los virus contienen toda la información necesaria para su ciclo reproductor; pero necesitan para conseguirlo a otras células vivas de las que utilizan orgánulos y moléculas. Los virus pueden actuar de dos formas distintas:
· Reproduciéndose en el interior de la célula infectada, utilizando todo el material y la maquinaria de la célula hospedante.
· Uniéndose al material genético de la célula en la que se aloja, produciendo cambios genéticos en ella.Por eso se pueden considerar los virus como agentes infecciosos productores de enfermedades o como agentes genéticos que alteran el material el material hereditario de la célula huésped.

Reproducción de los Virus
La única función que poseen los virus y que comparten con el resto de los seres vivos es la de reproducirse o generar copias de sí mismos, necesitando utilizar la materia, la energía y la maquinaria de la célula huésped, por lo que se les denomina parásitos obligados. No poseen metabolismo ni organización celular, por lo que se les sitúa en el límite entre lo vivo y lo inerte.
Los virus una vez infectan a una célula, pueden desarrollar dos tipos de comportamiento, bien como agentes infecciosos produciendo la lisis o muerte de la célula o bien como virus atenuados, que añaden material genético a la célula hospedante y por lo tanto resultan agentes de la variabilidad genética.Ambos casos han sido estudiados con detalle en los virus que atacan a bacterias, por lo que han sido llamados “bacteriófagos”:

En los dos casos de infección el proceso empieza de esta forma:

1. Fase de fijación
(a): Los virus se unen por su base a la cubierta de la pared bacteriana.

2. Fase de contracción
(b): La cola se contrae y el ácido nucleico del virus se empieza a inyectar.

3. Fase de penetración

(c): El ácido nucleico del virus penetra en el citoplasma de la bacteria, y a partir de este momento puede seguir dos ciclos diferentes:
1. En el ciclo lisogénico se produce cuando el genoma del virus queda integrado en el genoma de la bacteria, no expresa sus genes y se replica junto al de la bacteria.

2. En el ciclo lítico el ADN bacteriano fabrica las proteínas víricas y copias de ácidos nucleicos víricos. Cuando hay suficiente cantidad de estas moléculas, se produce el ensamblaje de la proteína y el ADN. vírico y se liberan al medio, produciendo la muerte de la célula.

3. El virus queda en forma de profago.

BIODIVERSIDAD

INTRODUCCIÓN
Nuestro planeta está habitado por un número estimado de 2 a 4.5 millones de formas de vida, y el número estimado de especies extintas es aproximadamente de 50 a 16 mil millones.
Se ha dado el nombre de taxonomía (taxis, ordenar, nomos, ley) al estudio de los principios generales de la clasificación, sin embargo esta ciencia comprende algo más que identificar y dar nombre a los organismos, su interés es el de buscar un orden dentro de la diversidad.
En el caso de los organismos, los biólogos han buscado un sistema “natural”, que sea independiente de la imaginación humana, denominándose taxa al grupo de organismos donde todos los miembros están relacionados entre sí por un ancestro común; por lo que una diferencia importante entre clasificar organismos y objetos inanimados es que para estos hay varios criterios, mientras que para los organismos solo uno: el ancestro común. La clasificación moderna de los organismos obedece a las relaciones evolutivas y a dos contribuciones importantes del naturalista sueco Carlos Linneo (1707-1778), que fueron:
a) Un método de agrupación
b) Un método de denominación o nomenclatura científica llamado sistema binomial.
El método de agrupación que ideó consiste en categorías (jerarquías filogenéticas o historia evolutiva), que en orden descendente son:
Reino
Phylum o Filo
Clase
Orden
Familia
Género
especie.
La especie es la unidad de clasificación biológica y se puede definir como ¨el conjunto de individuos con características comunes capaces des cruzarse genéticamente entre sí y producir descendencia fértil¨
Es obvio que el reino abarca distintos phyla; un phylum, varias clases; una clase, distintos órdenes; un orden, familias; una familia, varios géneros; y un género, una o varias especies, todas estrechamente relacionadas.
Además hay niveles intermedios entre categorías como sub, super, infra y otras como la variedad, el grado y la rama. La segunda contribución de Linneo fue la propuesta que todos los organismos tuvieran dos nombres para ser reconocidos en todo el mundo, a esto se llama sistema binominal.
Así, Canis familiaris es el nombre científico aceptado mundialmente para perro (esapañol), kelev (hebreo), hund (alemán), dog (inglés), pies (polaco), sabaka (ruso), hond (danés), y chien (francés).
Las reglas para la nomenclatura binominal son:
· La primera palabra del nombre nos dice el género y su primera letra va con mayúscula.
· La segunda palabra es un adjetivo; ambos palabras denominan a la especie.
· Se usa el latín o palabras latinizadas.
· Cuando el nombre se escribe a mano o a máquina, se subraya; cuando se imprime, se escribe en “cursivas”, llamadas también “letras itálicas”.
Dentro de las ventajas de la clasificación taxonómica están:
· El estudio de los organismos se facilita.
· El nombre científico es aceptado mundialmente, independientemente del idioma de cada país, ya que se usa el Latín, una lengua muerta que no cambia.
· El reconocimiento de categorías de acuerdo con relaciones de semejanzas estructurales y evolutivas.
· Los organismos se ordenan en jerarquías de mayor a menor.

PASTEUR

Louis Pasteur (1822-1895), un microbiólogo y químico francés lo ganó con una serie de experimentos tan bien diseñados que no permitían dudar de que la vida no surgiera de la nada.Pasteur utilizó recipientes con cuellos largos y curvos, en los que colocó un caldo que había hervido durante algunos minutos. Al retirarlo del fuego, el aire entraba por el cuello, pero los microbios quedaban atrapados en él, lo que impedía que contaminaran el líquido y permitía conservarlo estéril indefinidamente. Sólo cuando se rompía el cuello, aparecían organismos en el caldo. Con esto, Pasteur derribó definitivamente la teoría de la generación espontánea, pues demostró que los organismos sólo aparecían cuando había aire contaminado.Los experimentos de Redi confirmaron la hipótesis de la biogénesis, los cuales se enfrentaron en distintos momentos y con distintos experimentos para apoyar cada una de sus posturas hasta que finalmente con la precisión científica que caracterizó los experimentos de Louis Pasteur logró definitivamente dejar de lado la idea de que la vida pudiera surgir por “generación espontánea”.

SPALLANZANI

Lazzaro Spallanzani (1729-1799), naturalista e investigador italiano repitió los experimentos de Needham. Spallanzani tuvo particular cuidado al hervir las mezclas y al llenar los frascos. Usó corchos para tapar la mitad de los frascos. Selló herméticamente la otra mitad de los frascos. Spallanzani observó que los seres vivientes aparecieron solamente en los frascos tapados con corcho. Presentó este experimento como evidencia de que no hay generación espontánea. Pero los abiogenistas, proponentes de la generación espontánea, señalaron que se había excluido el aire de los frascos sellados. Sostenían que el aire era esencial para que hubiera generación espontánea. Los biogenistas, sin embargo, creían que el aire era la fuente de la contaminación y había que excluirlo. En 1860, la polémica entre abiogenistas y sus contradictores se había hecho tan intensa que la Academia de Ciencias Francesa ofreció un premio a quien pudiera resolver la controversia.

REDI

Francisco Redi (1626-1697), un médico y científico italiano, no estaba convencido de que las moscas salían de la carne podrida. Redi observó que las moscas se posaban en la carne podrida. También observó que en la carne aparecían pequeños organismos blancos parecidos a gusanos. Estos gusanos se comían la carne podrida. Eventualmente, los gusanos dejaban de moverse y se convertían en pequeñas estructuras ovaladas. Redi colocó algunas de estas estructuras en frascos de cristal y los cubrió. Después, notó que de estas estructuras salían las moscas. Estas moscas se parecían a las moscas que había observado antes en la carne podrida. Redi formuló la hipótesis de que las moscas que se habían desarrollado de los gusanos eran la progenie de las moscas originales.Redi diseñó un experimento para determinar si se desarrollaban gusanos en caso de que no se dejara a ninguna mosca entrar en contacto con la carne. Puso carne en ocho frascos. Cuatro de ellos permanecieron abiertos. Selló los otros cuatro frascos. En los frascos abiertos, observó que había moscas continuamente. Después de un corto período de tiempo, había gusanos solo en los frascos abiertos. Redi llegó a la conclusión de que los gusanos aparecían en la carne descompuesta solo si las moscas habían puesto antes sus huevos en la carne.Los experimentos de Redi presentaron evidencia en contra de la hipótesis de la generación espontánea. Sus opositores alegaron que no se había permitido que el aire entrara a los frascos sellados. Ellos decían que la falta de aire evitaba que hubiera generación espontánea. Redi rediseñó su experimento y usó cubiertas. Estas cubiertas permitían que entrara el aire, pero dejaban fuera las moscas. No aparecieron gusanos en los frascos cubiertos de esta manera.En 1745, John T. Needham, religioso jesuita y naturalista inglés, sostenía que había una “fuerza vital” que originaba la vida (Generación Espontánea) la cual argumentó con elegantes experimentos de índole científica; idea que fue apoyada por varios naturalistas que encontraron una fuerte oposición con el surgimiento de la teoría de la Biogénesis (la vida surge de la vida misma).

ORIGEN DE LA VIDA

La cuestión sobre el origen de la vida y por ende de los seres vivos es, de hecho, una de las más antiguas en filosofía. Ya el filosofo Demócrito escribió que todo lo que existe en el universo es el fruto del azar y la necesidad. En la época moderna a lo largo del siglo XX encontramos reflejadas ambas posturas, a menudo antagónicas. Por ejemplo, el astrónomo británico Harold Spencer consideraba que la vida necesariamente aparece dados los elementos que se requieren, y escribió en 1940 algo así como: “Parece razonable suponer que, siempre que en algún lugar del universo aparezcan las condiciones adecuadas, la vida inevitablemente aparecerá.” En el mismo lado del debate encontramos al químico Melvin Calvin, quien concluía que todo lo que se requiere para estimar la probabilidad de vida celular en el universo, es conocer el número de planetas con condiciones similares al nuestro.Así, en los últimos 2,500 años hemos pasado por diferentes teorías e hipótesis que tratan de una u otra forma explicar sin necesidad de las divinidades de antiguos pueblos y culturas como se generó la vida que conocemos en nuestro planeta y quizá en otros planetas más.Desde la antigüedad la creencia de la generación espontánea se tenía como aceptable, sosteniendo que la vida podía surgir del lodo, del agua, del mar o de las combinaciones de los cuatro elementos fundamentales: aire, fuego, agua, y tierra. Aristóteles propuso el origen espontáneo para gusanos, insectos, y peces a partir de sustancias como el rocío, el sudor y la humedad. Según él, este proceso era el resultado de la interacción de la materia no viva, con fuerzas capaces de dar vida a lo que no tenía. A esta fuerza la llamó entelequia.
Hasta la mitad del siglo XVII, la mayor parte de la gente aceptó la hipótesis de la generación espontánea.